paradisemc.ru

II.Канальцевая реабсорбция. Реабсорбция и секреция белка, натрия и хлора в почечных канальцах Большое количество воды реабсорбируется в

Первичная моча, проходя по канальцах и уборочных трубочках, перед тем как превратиться в конечную мочу, претерпевает значительные изменения. Разница состоит не только в ее количестве (с 180 л остается 1-1,5 л), но и качества. Некоторые вещества, нужные организму, полностью исчезают из мочи или их становится гораздо меньше. Происходит процесс реабсорбции. Концентрация других веществ во много раз увеличивается: они концентрируются при реабсорбции воды. Еще другие вещества, которых вообще не было в первичной мочи,
появляются в конечной. Это происходит в результате их секреции.
Процессы реабсорбции могут быть активными или пассивными. Для осуществления активного процесса необходимо, чтобы были специфические транспортные системы и энергия. Пассивные процессы происходят, как правило, без затраты энергии по законам физики и химии.
Канальцевая реабсорбция происходит во всех отделах, но ее механизм в разных частях неодинакова. Условно можно выделить С отделы: проксимальный извитой каналец, петля нефрона и дистальный извитой каналец С уборочной трубочкой.
В проксимальных извитых канальцах полностью реабсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы. В этом же отделе реабсорбируется около 2/3 воды и неорганических солей Na +, К + Са2 +, Mg2 +, Cl-, НС07, т.е. вещества, которые нужны организму для его деятельности. Механизм реабсорбции главным образом прямо или косвенно связан с реабсорбцией Na +.
Реабсорбция натрия. Большая часть Na + реабсорбируется против градиента концентрации за счет энергии АТФ. Реабсорбция Na + осуществляется в 3 этапа: перенос иона через апикальную мембрану эпителиальных клеток канальцев, транспортировки в базальной или латеральной мембраны и перенос через указанные мембраны в межклеточную жидкость и в кровь. Основной движущей силой реабсорбции является перенос Na + с помощью Na +, К +-АТФ-азы
через базолатерального мембрану. Это обеспечивает постоянное отток ионов с кдитин. Вследствие этого Na + по градиенту концентрации с помощью специальных образований эндоплазматического ретикулума поступает к мембранам, возвращенных в межклеточной среды.
Вследствие этого постоянно действующего конвейера концентрация ионов внутри клетки и особенно вблизи апикальной мембраны становится гораздо ниже, чем с другой ее стороны, это способствует пассивному поступлению Na + в клетку по ионному градиенту. Таким образом,
2 этапа натриевой реабсорбции клетками канальцев являются пассивными и только один, конечный, требует затрат энергии. Кроме того, часть Na + реабсорбируется пассивно по межклеточных промежутках вместе с водой.
Глюкоза. Глюкоза реабсорбируется вместе с транспортом Na + В апикальной мембране клеток есть специальные транспортеры. Это белки
3 молекулярной массой 320 000, которые в начальных отделах проксимального канальца переносят друг Na + и одну молекулу глюкозы (постепенное уменьшение концентрации глюкозы в моче приводит к тому, что в следующей области канальца для переноса одной молекулы глюкозы используется уже два Na +). Движущей силой этого процесса является также электрохимический градиент Na + На противоположной стороне клетки комплекс Na - глюкоза - переносчик распадается на три элемента. Вследствие этого освобожден переносчик возвращается на свое прежнее место и снова приобретает способность переносить новые комплексы Na + и глюкозы. В клетке концентрация глюкозы увеличивается, благодаря чему образуется градиент концентрации, который направляет его в базально-латеральных мембран клетки и обеспечивает выход в межклеточную жидкость. Отсюда глюкоза поступает в кровеносные капилляры и возвращается в общий кровоток. Апикальная мембрана не пропускает глюкозу обратно в просвет канальца. Транспортные переносчики глюкозы содержатся лишь в проксимальном отделе канальцев, поэтому глюкоза реабсорбируется только здесь.
В норме при обычном уровне глюкозы в крови, а следовательно и концентрации ее в первичной мочи, реабсорбируется вся глюкоза. Однако при повышении уровня глюкозы в крови более 10 ммоль / л (около 1,8 г / л) мощность транспортных систем становится недостаточной для реабсорбции.
Первые следы нереабсорбованои глюкозы в конечной моче обнаруживаются при превышении его концентрации в крови. Чем выше концентрация глюкозы в крови, тем большее количество нереабсорбованои глюкозы.
До концентрации ее 3,5 г / л это увеличение еще не прямо пропорционально, поскольку в процесс еще не включается часть транспортеров. Но, начиная с уровня 3,5 г / л, выведение глюкозы с мочой становится лрямо пропорционален концентрации ее в крови. У мужчин полная нагрузка системы реабсорбции наблюдается при поступлении 2,08 ммоль / мин (375 мг / мин) глюкозы, а у женщин-1, 68 ммоль / мин (303 мг / мин) из расчета на 1,73 м2 поверхности тела.
При неушкодж? Них почках появление глюкозы в моче, например при сахарном диабете, является следствием превышения пороговой концентрации (10 ммоль / л) глюкозы в крови.
Аминокислоты. Реабсорбция аминокислот происходит по такому же механизму, как и реабсорбция глюкозы. Полная реабсорбция аминокислот происходит уже в начальных отделах проксимальных канальцев. Этот процесс таксйк связан с активной реабсорбцией Na + через апикальную мембрану клеток. Выявлено 4 типа транспортных систем: а) для основных б) для кислых в) для гидрофильных г) для гидрофобных аминокислот. С клетки аминокислоты пассивно по градиенту концентрации проходят через базальную мембрану в межклеточную жидкость, а оттуда - в кровь. Появление аминокислот в моче может быть следствием нарушения транспортных систем или очень высокой концентрации его в крови. В последнем случае может проявляться эффект, который по механизму напоминает глюкозурию - перегрузка транспортных систем. Иногда наблюдается конкуренция кислот одного типа за общий переносчик.
Белки. Механизм реабсорбции белков значительно отличается от механизма реабсорбции описанных соединений. Попадая в первичную 0, ечу, небольшое количество белков в норме почти полностью реабсорбируется путем пиноцитоза. В цитоплазме клеток проксимальных канальцев белки распадаются при участии лизосомальных ферментов. Аминокислоты, которые образуются, по градиенту концентрации из клетки поступают в межклеточную жидкость, а оттуда - в кровеносные капилляры. Таким путем может реабсорбуватися до 30 мг белка за 1 мин. При повреждении клубочков в фильтрат попадает больше белков и часть может поступать в мочу (протеинурия).
Реабсорбция воды. Процессы реабсорбции воды происходит во всех отделах нефрона. Но механизмы реабсорбции в различных отделах разные. В проксимальных извитых канальцах реабсорбируется около% воды. Около 15% первичной мочи реабсорбируется в петле нефрона и 15%-в дистальных извитых канальцах и собирательных трубочках. В конечной мочи, как правило, остается только 1% воды первичного фильтрата. Причем в первых двух отделах количество реабсорбованои воды мало зависит от водной нагрузки организма и почти не регулируется. В дистальных отделах реабсорбция регулируется в зависимости от потребности организма: вода, которая попала сюда, может задерживаться в организме или выводиться с мочой.
В основе реабсорбции воды в проксимальных канальцах лежат процессы осмоса. Вода реабсорбируется вслед за ионами. Основным ионом, обеспечивающим пассивное всасывание воды, является Na +. Реабсорбция других веществ (углеводов, аминокислот и др.)., Которая осуществляется в этих отделах нефрона, также способствует всасыванию воды.
Реабсорбция воды и электролитов в петле нефрона (поворотно-протипоточний механизм). Вследствие указанных изменений в петлю нефрона поступает моча, которая является изотоническим по окружающей межклеточной жидкости. Механизм реабсорбции воды и Na + и Сl-в данном участке нефрона существенно отличается от такового в других отделах. Здесь вода реабсорбируется согласно механизму поворотно-протипоточнои системы. В ее основе лежат особенности расположения восходящих и нисходящих частей в непосредственной близости друг от друга. Параллельно с этим вглубь мозгового вещества идут уборочные трубочки и кровеносные капилляры.
Поворотно-протипоточний механизм определяется следующими функциональными характеристиками почек: а) глубже в мозговое вещество опускается петля нефрона, тем выше становится осмотическое давление окружающей межклеточной жидкости (с 300 мосм / л в корковом веществе почки в 1200-1450 мосм / л на верхушке сосочка) б) восходящий отдел не достаточно проницаем для воды в) эпителий восходящего отдела активно, с помощью транспортных систем, скачивает Na + и Си-г
Активное выкачивание NaCl эпителия восходящего отдела обусловливает повышение осмотического давления межклеточной жидкости. Благодаря этому вода диффундирует сюда нисходящего отдела петли нефрона. В начальный отдел нисходящей части поступает фильтрат, который имеет низкий осмотическое давление по сравнению с окружающей веществом. Моча по мере спуска по нисходящему отдела, отдавая воду, имеет постоянный осмотический градиент между фильтратом и межклеточной жидкостью. Поэтому вода оставляет фильтрат в области нисходящего колена, чем обеспечивается здесь реабсорбция около 15% объема первичной мочи. Кроме того, в формировании осмолярности фильтрата петли нефрона определенное значение принадлежит моче, которая может сюда попасть при повышении его концентрации в паренхиме почки.
В связи с выходом воды осмотическое давление мочи постепенно растет и достигает своего максимума в области поворота петли нефрона. Гиперосмотические моча поднимается по восходящему отдела, где, как указывалось выше, теряет Na + и С1-, которые выводятся благодаря активному функционированию транспортных систем. Поэтому в дистальные извитые канальцы фильтрат поступает даже гипоосмотическими (около 100-200 мосм / л). Таким образом, в нисходящем колене происходит процесс концентрирования мочи, а в восходящем - ее разведения.
Особенности функционирования отдельных нефронов во многом зависят от длины петли нефрона и выраженности нисходящего и восходящего отделов. Чем дольше петля (юкстамедулярни нефроны), то более выраженные процессы концентрации мочи.
В дистальные извитые канальцы и собирательные трубочки чаще поступает около 15% объема первичного фильтрата. Но в конечной моче, как правило, остается лишь 1% первичного фильтрата. В первых двух отделах количество реабсорбованои воды мало зависит от водной нагрузки организма и почти не регулируется (облигатная реабсорбция). В дистальных отделах реабсорбция регулируется с учетом потребностей организма: вода, поступившая сюда, может задерживаться в организме или выводиться с мочой (факультативная реабсорбция). Регулюетеся она гормонами, образование которых зависит от водного и ионного состояния организма.

До 80% профильтровавшегося натрия реабсорбируется в проксимальных сегментах канальцев, тогда как в дистальных сегментах и собирательных трубках его всасывается около 8 — 10%.

В проксимальном сегменте натрий всасывается с эквивалентным количеством воды, поэтому содержимое канальца остается изоосмотичным. В проксимальных отделах высока проницаемость и для натрия, и для воды. Через апикальную мембрану натрий входит в цитоплазму пассивно по градиенту электрохимического потенциала. Далее натрий движется по цитоплазме к базальной части клетки, где находятся натриевые насосы (Na-K-АТФаза, зависимая от Mg).

Пассивная реабсорбция ионов хлора происходит в зонах клеточных контактов, которые проницаемы не только для хлора, но и для воды. Проницаемость межклеточных промежутков не является строго постоянной величиной, она может меняться при физиологических и патологических состояниях.

В нисходящей части петли Генле натрий и хлор практически не всасываются.

В восходящей части петли Генле функционирует иной механизм всасывания натрия и хлора. На апикальной поверхности расположена система переноса в клетку ионов натрия, калия и двух ионов хлора. На базальной поверхности также имеются Na-K-насосы.

В дистальном сегменте ведущим механизмом реабсорбции солей является Na-насос, который обеспечивает реабсорбцию натрия против высокого концентрационного градиента. Здесь всасывается около 10% натрия. Реабсорбция хлора происходит независимо от натрия и пассивно.

В собирательных трубках транспорт натрия регулируется альдостероном. Натрий входит по натриевому каналу, движется к базальной мембране и переносится во внеклеточную жидкость Na-K-АТФазой.

Альдостерон действует на дистальные извитые канальцы и начальные отделы собирательных трубок.

Транспорт калия

В проксимальных сегментах всасывается 90-95% профильтровавшегося калия. Часть калия всасывается в петле Генле. Выделение калия с мочой зависит от его секреции клетками дистального канальца и собирательных трубок. При избыточном поступлении калия в организм его реабсорбция в проксимальных канальцах не снижается, но резко увеличивается секреция в дистальных канальцах.

При всех патологических процессах, сопровождающихся снижением фильтрационной функции, отмечается значительное увеличение секреции калия в канальцах почек.

В одной и той же клетке дистального канальца и собирательных трубок существуют системы реабсорбции и секреции калия. При дефиците калия они обеспечивают максимальное извлечение калия из мочи, а при избытке — его секрецию.

Секреция калия через клетки в просвет канальца является пассивным процессом, происходящим по концентрационному градиенту, а реабсорбция — активным. Усиление секреции калия под влиянием альдостерона связано не только с действием последнего на проницаемость калия, но и с увеличением поступления калия в клетку вследствие усиления работы Na-K-насоса.

Другим важным фактором регуляции транспорта калия в канальцах является инсулин, уменьшающий экскрецию калия. Большое влияние на уровень выделения калия оказывает состояние кислотно-щелочного равновесия. Алкалоз сопровождается увеличением выделения калия почкой, а ацидоз приводит к уменьшению калийуреза.

Транспорт кальция

Почки и кости играют главную роль в поддержании стабильного уровня кальция в крови. В сутки потребление кальция составляет около 1 г. Кишечником выделяется 0,8, почками — 0,1-0,3 г/сут. В клубочках фильтруется ионизированный кальций и находящийся в виде низкомолекулярных комплексов. В проксимальных канальцах реабсорбируется 50% профильтровавшегося кальция, в восходящем колене петли Генле — 20-25%, в дистальных канальцах — 5-10, в собирательных трубках — 0,5-1,0%.

Секреции кальция у человека не происходит.

В клетку кальций поступает по градиенту концентрации и сосредоточивается в эндоплазматическом ретикулуме и в митохондриях. Из клетки кальций выводится двумя путями: с помощью кальциевого насоса (Са-АТФаза) и Na/Ca обменника.

В клетке почечного канальца должна быть особенно эффективная система стабилизации уровня кальция, так как он непрерывно поступает через апикальную мембрану, а ослабление транспорта в кровь нарушило бы не только баланс кальция в организме, но и повлекло бы патологические изменения в самой клетке нефрона.

    Гормоны, регулирующие транспорт кальция в почке:

  • Паратгормон
  • Тирокальцитонин
  • Соматотропный гормон

Среди гормонов, регулирующих транспорт кальция в почке, наибольшее значение имеет паратгормон. Он уменьшает реабсорбцию кальция в проксимальном канальце, однако при этом снижается его экскреция почкой вследствие стимуляции всасывания кальция в дистальном сегменте нефрона и собирательных трубках.

В противоположность паратгормону тирокальцитонин вызывает увеличение экскреции кальция почкой. Активная форма витамина D3 увеличивает реабсорбцию кальция в проксимальном сегменте канальца. Соматотропный гормон способствует усилению кальцийуреза, именно поэтому у больных с акромегалией часто развивается мочекаменная болезнь.

Транспорт магния

Здоровый взрослый человек с мочой за сутки выделяет 60-120 мг магния. До 60% профильтровавшегося магния реабсорбируется в проксимальных канальцах. Большое количество магния реабсорбируется в восходящем колене петли Генле. Реабсорбция магния является активным процессом и ограничена величиной максимального канальцевого транспорта. Гипермагниемия приводит к усилению экскреции магния почкой и может сопровождаться преходящей гиперкальциурией.

При нормальном уровне клубочковой фильтрации почка быстро и эффективно справляется с повышением уровня магния в крови, предотвращая гипермагниемию, поэтому клиницисту чаще приходится встречаться с проявлениями гипомагниемии. Магний, как и кальций, не секретируется в канальцах почек.

Скорость экскреции магния возрастает при остром увеличении объема внеклеточной жидкости, при увеличении тирокальцитонина и АДГ. Паратгормон уменьшает выделение магния. Однако гиперпаратиреоидизм сопровождается гипомагниемией. Это, вероятно, связано с гиперкальциемией, которая увеличивает экскрецию не только кальция, но и магния в почках.

Транспорт фосфора

Почки играют ключевую роль в поддержании постоянства фосфатов в жидкостях внутренней среды. В плазме крови фосфаты представлены в виде свободных (около 80%) и связанных с белками ионов. За сутки через почки выделяется около 400-800 мг неорганического фосфора. 60-70% фильтруемых фосфатов всасывается в проксимальных канальцах, 5-10% — в петле Генле и 10-25% — в дистальных канальцах и собирательных трубках. Если резко снижена транспортная система проксимальных канальцев, то начинает использоваться большая мощность дистального сегмента нефрона, который может предотвратить фосфатурию.

В регуляции канальцевого транспорта фосфатов основная роль принадлежит гормону паращитовидных желез, который угнетает реабсорбцию в проксимальных сегментах нефрона, витамину D3, соматотропному гормону, которые стимулируют реабсорбцию фосфатов.

Транспорт глюкозы

Глюкоза, прошедшая через клубочковый фильтр, практически полностью реабсорбируется в проксимальных сегментах канальцев. За сутки может выделяться до 150 мг глюкозы. Реабсорбция глюкозы осуществляется активно с участием ферментов, затратой энергии и потреблением кислорода. Глюкоза проходит через мембрану вместе с натрием против высокого концентрационного градиента.

В клетке происходят накопление глюкозы, фосфорилирование ее до глюкозо-6-фосфата и пассивный перенос в околоканальцевую жидкость.

Полная реабсорбция глюкозы происходит лишь в тех случаях, когда количество переносчиков и скорость их движения через клеточную мембрану обеспечивают перенос всех молекул глюкозы, поступивших в просвет проксимальных отделов канальцев из почечных телец. Максимальное количество глюкозы, которое в состоянии реабсорбироваться в канальцах при полной загрузке всех переносчиков, в норме у мужчин составляет 375 ± 80, у женщин — 303 ± 55 мг/мин.

Уровень глюкозы в крови, при котором она появляется в моче, равен 8-10 ммоль/л.

Транспорт белка

В норме профильтровавшийся в клубочках белок (до 17-20 г/сут) практически весь реабсорбируется в проксимальных сегментах канальцев и в суточной моче обнаруживается в незначительном количестве — от 10 до 100 мг. Канальцевый транспорт белка — процесс активный, в нем принимают участие протеолитические ферменты. Реабсорбция белка осуществляется путем пиноцитоза в проксимальных сегментах канальцев.

Под воздействием протеолитических ферментов, содержащихся в лизосомах, белок подвергается гидролизу с образованием аминокислот. Проникая через базальную мембрану, аминокислоты поступают в около- канальцевую внеклеточную жидкость.

Транспорт аминокислот

В клубочковом фильтрате концентрация аминокислот такая же, как и в плазме крови, — 2,5-3,5 ммоль/л. В норме обратному всасыванию подвергается около 99% аминокислот, причем этот процесс происходит в основном в начальных отделах прокси-мального извитого канальца. Механизм реабсорбции аминокислот подобен описанному выше для глюкозы. Имеется ограниченное количество переносчиков, и когда все они соединяются с соответствующими аминокислотами, избыток последних остается в канальцевой жидкости и выводится с мочой.

В норме моча содержит лишь следы аминокислот.

    Причинами аминоацидурии являются:

  • увеличение концентрации аминокислот в плазме при повышенном поступлении в организм и при нарушении их метаболизма, что приводит к перегрузке транспортной системы канальцев почек и аминоацидурии
  • дефект переносчика, обеспечивающего реабсорбцию аминокислоты
  • дефект апикальной мембраны клеток канальцев, что приводит к увеличению проницаемости щеточной каемки и зоны межклеточных контактов. В результате отмечается обратный ток аминокислот в каналец
  • нарушение метаболизма клеток проксимального канальца

Подробности

Реабсорбция – это транспорт веществ из просвета почечных канальцев в кровь , протекающую через околоканальцевые капилляры. Реабсорбируется 65% от объема первичной мочи (примерно 120 л/сутки. Было 170 л, выделилось 1.5): вода, минеральные соли, все необходимые органические компоненты, (глюкоза, аминокислоты). Транспорт пассивный (осмос, диффузия по электрохимическому градиенту) и активный (первично-активный и вторично-активный с участием белковых молекул-переносчиков). Транспортные системы такие же, как и в тонком кишечнике.

Пороговые вещества – обычно полностью реабсорбируются (глюкоза, аминокислоты) и выделяются с мочой только если их концентрация в плазме крови превышает пороговую величину (так называемый «порог выведения»). Для глюкозы порог выведения 10 ммоль/л (при нормальной концентрации глюкозы в крови 4.4-6.6 ммоль/л).

Беспороговые вещества – всегда выводятся независимо от их концентрации в плазме крови . Они не реабсорбируются или реабсорбируются частично, например, мочевина и др. метаболиты.

Механизм работы различных отделов почечного фильтра.

1. В проксимальном канальце берет свое начало процесс концентрирования клубочкового фильтрата, причем наиболее важным моментом здесь является активное поглощение солей. С помощью активного транспорта из данного участка канальца обратно всасывается около 67% Na+. Почти пропорциональное количество воды и некоторых других растворенных веществ, например ионов хлора, следует за ионами натрия пассивно. Таким образом, прежде чем фильтрат достигнет петли Генле, из него реабсорбирустся около 75% веществ. В результате канальцевая жидкость становится изоосмотической по отношению к плазме крови и тканевым жидкостям.

Проксимальный каналец идеально приспособлен для интенсивной реабсорбции соли и воды . Многочисленные микроворсинки эпителия образуют так называемую щеточную кайму, покрывающую внутреннюю поверхность просвета почечного канальца. При таком устройстве абсорбирующей поверхности чрезвычайно увеличивается площадь клеточной мембраны и в результате облегчается диффузия соли и воды из просвета канальца в эпителиальные клетки.

2. Нисходящее колено петли Генле и часть восходящего колена , расположенная во внутреннем слое мозгового вещества , состоят из очень тонких клеток, у которых нет щеточной каймы, а число митохондрий мало. Морфология тонких участков нефрона свидетельствует об отсутствии здесь активного переноса растворенных веществ через стенку канальца. На данном участке нефрона NaCl очень плохо проникает сквозь стенку канальца, мочевина - несколько лучше, а вода проходит без затруднений.

3. Стенка тонкого участка восходящего колена петли Генле также неактивна в отношении транспорта соли. Тем не менее она обладает высокой проницаемостью для Na+ и Сl-, но малопроницаема для мочевины и почти непроницаема для воды.

4. Толстый участок восходящего колена петли Генле , расположенный в мозговом веществе почки, отличается от остальных участков указанной петли. Он осуществляет активный перенос Na+ и Cl- из просвета петли в интерстициальное пространство. Этот участок нефрона вместе с остальной частью восходящего колена чрезвычайно мало проницаем для воды. Из-за реабсорбции NaCl жидкость поступает в дистальный каналец несколько гипоосмотичной по сравнению с тканевой жидкостью

5. Движение воды через стенку дистального канальца - процесс сложный. Дистальный каналец имеет особое значение для транспорта К+, Н+ и NH3 из тканевой жидкости в просвет нефрона и транспорта Na+, Cl- и Н2О из просвета нефрона в тканевую жидкость. Поскольку соли активно "выкачиваются" из просвета канальца, вода следует за ними пассивно.

6. Собирательный проток проницаем для воды, что позволяет ей переходить из разбавленной мочи в более концентрированную тканевую жидкость мозгового вещества почки. В этом заключается конечная стадия образования гиперосмотической мочи. В протоке происходит также реабсорбция NaCl, но за счет активного переноса Na+ через стенку. Для солей собирательный проток непроницаем, в отношении воды его проницаемость меняется. Важной особенностью дистального участка собирательного протока, расположенного во внутреннем мозговом слое почек, является его высокая проницаемость для мочевины.

Механизм реабсорбции глюкозы.

Проксимальная (1/3) реабсорбция глюкозы осуществляется с помощью специальных переносчиков щеточной каемки апикальной мембраны эпителиальных клеток . Эти переносчики транспортируют глюкозу, только если одновременно связывают и переносят натрий. Пассивное перемещение натрия по градиенту концентрации внутрь клеток ведет к транспорту через мембрану и переносчика с глюкозой.

Для реализации этого процесса необходима низкая концентрация натрия в эпителиальной клетке, создающая градиент концентрации между внешней и внутриклеточной средой, что обеспечивается энергозависимой работой натрий-калиевого насоса базальной мембраны .

Такой вид транспорта называют вторично активным, или симпортом , т. е. совместным пассивным транспортом одного вещества (глюкоза) из-за активного транспорта другого (натрия) с помощью одного переносчика. При избытке глюкозы в первичной моче может произойти полная загрузка всех молекул переносчиков и глюкоза уже не сможет всасываться в кровь.

Эта ситуация характеризуется понятием «максимальный канальцевый транспорт вещества » (Тм глюкозы), которое отражает максимальную загрузку канальцевых переносчиков при определенной концентрации вещества в первичной моче и, соответственно, в крови. Эта величина составляет от 303 мг/мин у женщин до 375 мг/мин у мужчин. Величине максимального канальцевого транспорта соответствует понятие «почечный порог выведения».

Почечным порогом выведения называют ту концентрацию вещества в крови и, соответственно, в первичной моче, при которой оно уже не может быть полностью реабсорбировано в канальцах и появляется в конечной моче. Такие вещества, для которых может быть найден порог выведения, т. е. реабсорбирующиеся при низких концентрациях в крови полностью, а при повышенных концентрациях - не полностью, носят название пороговых. Примером является глюкоза, которая полностью всасывается из первичной мочи при концентрациях в плазме крови ниже 10 ммоль/л, но появляется в конечной моче, т. е. полностью не реабсорбируется, при содержании ее в плазме крови выше 10 ммоль/л. Следовательно, для глюкозы порог выведения составляет 10 ммоль/л .

Механизмы секреции в почечном фильтре.

Секреция - это транспорт веществ из крови , протекающей через околоканальцевые капилляры, в просвет почечных канальцев. Транспорт пассивный и активный. Секретируются ионы Н+, К+, аммиак, органические кислоты и основания (например, чужеродные вещества, в частности, лекарственные препараты: пенициллин и др). Секреция органических кислот и оснований происходит с помощью вторично-активного натрий-зависимого механизма.

Секреция йонов калия.

Большая часть легко фильтрующихся в клубочках ионов калия обычно реабсорбируется из фильтрата в проксимальных канальцах и петлях Генлe . Скорость активной реабсорбции в канальце и петле не снижается даже в том случае, когда концентрация К+ в крови и фильтрате сильно возрастает в ответ на избыточное потребление организмом этого иона.

Однако дистальные канальцы и собирательные протоки способны не только реабсорбировать, но и секретировать ионы калия . Секретируя калий, данные структуры стремятся достичь ионного гомеостаза в случае поступления в организм необычайно большого количества этого металла. Транспорт К+, по-видимому, зависит от его постуления в клетки канальцев из тканевой жидкости, обусловленного активностью обычного Nar+ - Ka+-насоса, с утечкой К+ из цитоплазмы в канальцевую жидкость. Калий может просто диффундировать по электрохимическому градиенту из клеток почечных канальцев в просвет, потому что канальцевая жидкость электроотрицательна по отношению к цитоплазме. Секреция К+ с помощью данных механизмов стимулируется адренокортикальным гормоном-альдостероном, который высвобождается в ответ на повышение содержания К+ в плазме крови.

Роль почек в человеческом организме неоценима. Эти жизненно важные органы выполняют множество функций, они регулируют объём крови, устраняют продукты распада из тела, нормализуют кислотно-щелочное и водно-солевое равновесие и т. д. Эти процессы осуществляются благодаря тому, что в организме происходит мочеобразование. Канальцевая реабсорбция относится к одной из стадий этого важного процесса, оказывающего влияние на деятельность всего организма в целом.

Важность выделительной системы организма

Выведение из организма конечных продуктов метаболизма тканей – это очень важный процесс, поскольку эти продукты ужа неспособны принести пользу, но могут оказать токсическое воздействие на человека.

К выделительным органам относится:

  • кожа;
  • кишечник;
  • почки;
  • лёгкие.

Образование предсердного натрийуретического гормона осуществляется в предсердиях при их растяжении, вызванном избытком крови. Это гормональное вещество, наоборот, уменьшает всасывание воды в дистальных канальцах, усиливая процесс мочеобразования и способствуя выводу из организма избыточного содержания жидкости.

Какие могут быть нарушения?

Заболевания почек могут быть вызваны различными причинами, среди которых патологические изменения реабсорбции занимают не последнее место. При нарушениях всасывания воды может развиться полиурия , или патологическое увеличение мочеобразования , а также олигурия , при которой суточное содержание мочи составляет менее одного литра.

Нарушения усваивания глюкозы приводят к глюкозурии , при которой это вещество не реабсорбируется совсем, и в полном объёме выводится из организма вместе с мочой.

Очень опасно состояние острой почечной недостаточности, когда функции почек нарушаются, и органы прекращают нормально функционировать.

text_fields

text_fields

arrow_upward

Сравнение состава и количества первичной и конечной мочи пока­зывает, что в канальцах нефрона происходит процесс обратного всасывания воды и веществ, профильтровавшихся в клубочках. Этот процесс называется каналъцевой реабсорбцией

В зависимости от отдела канальцев, где он происходит, различают реабсорбцию про­ксимальную и дистальную .

Реабсорбция представляет собой транс­порт веществ из мочи в лимфу и кровь и в зависимости от меха­низма транспорта выделяют пассивную, первично и вторично ак­тивную реабсорбцию.

Проксимальная реабсорбция

text_fields

text_fields

arrow_upward

Проксимальная реабсорбция обеспечивает полное всасывание ряда веществ первичной мочи - глюкозы, белка, аминокислот и витаминов. В проксимальных отделах всасывается 2/3 профильтровав­шихся воды и натрия, большие количества калия, двухвалентных катионов, хлора, бикарбоната, фосфата, а также мочевая кислота и мочевина. К концу проксимального отдела в его просвете остается только 1/3 объема ультрафильтрата, и, хотя его состав уже существенно отличается от плазмы крови, осмотическое давление пер­вичной мочи остается таким же, как в плазме.

Всасывание воды происходит пассивно, по градиенту осмотичес­кого давления и зависит от реабсорбции натрия и хлорида. Реабсорбция натрия в проксимальном отделе осуществляется как актив­ным, так и пассивным транспортом. В начальном участке канальцев это активный процесс. Хотя натрий входит в клетки эпителия через апикальную мембрану пассивно через натриевые каналы по кон­центрационному и электрохимическому градиенту, его выведение через базолатеральные мембраны эпителиальных клеток происходит активно с помощью натрий-калиевых насосов, использующих энер­гию АТФ. Сопровождающим всасывающийся натрий анионом явля­ется здесь бикарбонат, а хлориды всасываются плохо. Объем мочи в канальце уменьшается из- за пассивной реабсорбции воды, и кон­центрация хлоридов в его содержимом растет. В конечных участках проксимальных канальцев межклеточные контакты высоко прони­цаемы для хлоридов (концентрация которых повысилась) и они пассивно по градиенту всасываются из мочи. Вместе с ними пас­сивно реабсорбируются натрий и вода. Такой пассивный транспорт одного иона (натрия) вместе с пассивным транспортом другого (хло­рида) носит название котранспорта.

Таким образом, в проксималь­ном отделе нефрона существуют два механизма всасывания воды и ионов:

1) активный транспорт натрия с пассивной реабсорбцией бикарбоната и воды,
2) пассивный транспорт хлоридов с пассивной реабсорбцией натрия и воды.

Поскольку натрий и другие электро­литы всегда всасываются в проксимальных канальцах с осмотически эквивалентным количеством воды, моча в проксимальных отделах нефрона остается изоосмотичной плазме крови.

Проксимальная реабсорбция глюкозы и аминокислот осуществля­ется с помощью специальных переносчиков щеточной каемки апи­кальной мембраны эпителиальных клеток. Эти переносчики транс­портируют глюкозу или аминокислоту только если одновременно связывают и переносят натрий. Пассивное перемещение натрия по градиенту внутрь клеток ведет к прохождению через мембрану и переносчика с глюкозой или аминокислотой. Для реализации этого процесса необходима низкая концентрация в клетке натрия, созда­ющая градиент концентрации между внешней и внутриклеточной средой, что обеспечивается энергозависимой работой натрий-кали­евого насоса базальной мембраны. Поскольку перенос глюкозы или аминокислоты связан с натрием, а его транспорт определяется ак­тивным удалением натрия из клетки, такой вид транспорта назы­вают вторично активным или симпортом, т.е. совместным пассив­ным транспортом одного вещества (глюкоза) из-за активного транс­порта другого (натрия) с помощью одного переносчика.

Поскольку для реабсорбции глюкозы необходимо связывание каж­дой ее молекулы с молекулой переносчика, очевидно, что при из­бытке глюкозы может произойти полная загрузка всех молекул пере­носчиков и глюкоза уже не сможет всасываться в кровь. Эта си­туация характеризуется понятием «максимальный канальцевый транс­ порт вещества», которое отражает максимальную загрузку канальцевых переносчиков при определенной концентрации вещества в пер­вичной моче и, соответственно, в крови. Постепенно повышая со­держание глюкозы в крови и тем самым в первичной моче, можно легко обнаружить ту величину ее концентрации, при которой глю­коза появляется в конечной моче и когда ее экскреция начинает линейно зависеть от прироста уровня в крови. Эта концентрация глюкозы в крови и, соответственно, ультрафильтрате свидетельствует о том, что все канальцевые переносчики достигли предела функци­ональных возможностей и полностью загружены. В это время реаб­сорбция глюкозы максимальна и составляет от 303 мг/мин у жен­щин и до 375 мг/мин у мужчин. Величине максимального канальцевого транспорта соответствует более старое понятие «почечный порог выведения».

Почечным порогом выведения называют ту концентрацию вещества в крови и в первичной моче, при которой оно уже не может быть полностью реабсорбировано в канальцах и появляется в конечной моче.

Такие вещества, для которых может быть найден порог вы­ведения, т.е. реабсорбирующиеся при низких концентрациях в крови полностью, а при повышенных концентрациях - не полностью, носят название пороговых. Типичным примером является глюкоза, которая полностью всасывается из первичной мочи при концентра­циях в плазме крови ниже 10 моль/л, но появляется в конечной моче, т.е. полностью не реабсорбируется, при содержании ее в плазме крови выше 10 моль/л. Следовательно, для глюкозы порог выведения составляет 10 моль/л.

Вещества, которые вообще не реабсорбируются в канальцах (ину­лин, маннитол) или мало реабсорбируются и выделяются пропорци­онально накоплению в крови (мочевина, сульфаты и др.), называ­ются непороговыми, т.к. для них порога выведения не существует.

Малые количества профильтровавшегося белка практически пол­ностью реабсорбируются в проксимальных канальцах с помощью пиноцитоза. Мелкие белковые молекулы абсорбируются на поверх­ности апикальной мембраны эпителиальных клеток и поглощаются ими с образованием вакуолей, которые передвигаясь сливаются с лизосомами. Протеолитические ферменты лизосом расщепляют поглощенный белок, после чего низкомолекулярные фрагменты и ами­нокислоты переносятся в кровь через базолатеральную мембрану клеток.

Дистальная реабсорбция

text_fields

text_fields

arrow_upward

Дистальная реабсорбция ионов и воды по объему значительно меньше проксимальной. Однако, существенно меняясь под влиянием регулирующих воздействий, она определяет состав конечной мочи и способность почки выделять либо концентрированную, либо разве­денную мочу (в зависимости от водного баланса организма). В дистальном отделе нефрона происходит активная реабсорбция на­ трия. Хотя здесь всасывается всего 10% от профильтровавшегося количества катиона, этот процесс обеспечивает выраженное умень­шение его концентрации в моче и, напротив, повышение концентрации в интерстициальной жидкости, что создает значительный гра­диент осмотического давления между мочой и интерстицием. Хлор всасывается преимущественно пассивно вслед за натрием. Способ­ность эпителия дистальных канальцев секретировать в мочу Н-ионы связана с реабсорбцией ионов натрия, этот вид транспорта в виде обмена натрия на протон получил название «антипорт». Активно всасывается в дистальном отделе канальцев калий, кальций и фос­ фаты. В собирательных трубочках, главным образом юкстамедуллярных нефронов, под влиянием вазопрессина повышается прони­цаемость стенки для мочевины и она, благодаря высокой концент­рации в просвете канальца, пассивно диффундирует в окружающее интерстициальное пространство, увеличивая его осмолярность. Под влиянием вазопрессина стенка дистальных извитых канальцев и собирательных трубочек становится проницаемой и для воды, в результате чего происходит ее реабсорбция по осмотическому гра­диенту в гиперосмолярный интерстиций мозгового вещества и далее в кровь.

Способность почки образовывать концентрированную или разве­денную мочу обеспечивается деятельностью противоточно-множи тельной канальцевой системы почки, которая представлена парал­лельно расположенными коленами петли Генле и собирательными трубочками (рис.12.2).

Цифрами обозначены величины осмотического давления интерстициальной жидкости и мочи. В собирательной трубочке цифрами в скобках обозначено осмотическое давление мочи в отсутствие вазопрессина (разведение мочи), цифрами без скобок - осмотическое давление мочи в условиях действия вазопрессина (концентрирование мочи).

Моча двигается в этих канальцах в противо­положных направлениях (почему систему и назвали противоточной), а процессы транспорта веществ в одном колене системы усиливаются («умножаются») за счет деятельности другого колена. Опреде­ляющую роль в работе противоточного механизма играет восходящее колено петли Генле, стенка которого непроницаема для воды, но активно реабсорбирует в окружающее интерстициальное простран­ство ионы натрия. В результате, интерстициальная жидкость стано­вится гиперосмотичной по отношению к содержимому нисходящего колена петли и по направлению к вершине петли осмотическое давление в окружающей ткани растет. Стенка же нисходящего ко­лена проницаема для воды, которая пассивно уходит из просвета в гиперосмотичный интерстиций. Таким образом, в нисходящем коле­не моча из-за всасывания воды становится все более и более ги­перосмотичной, т.е. устанавливается осмотическое равновесие с интерстициальной жидкостью. В восходящем колене, из-за всасывания натрия, моча становится все менее осмотичной и в корковый отдел дистального канальца восходит уже гипотоничная моча. Однако ее количество из-за всасывания воды и солей в петле Генле существенно уменьшилось.

Собирательная трубочка, в которую затем поступает моча, тоже образует с восходящим коленом петли Генле противоточную систе­му. Стенка собирательной трубочки становится проницаемой для воды только в присутствии вазопрессина. В этом случае, по мере продвижения мочи по собирательным трубочкам вглубь мозгового вещества, в котором нарастает осмотическое давление из-за всасы­вания натрия в восходящем колене петли Генле, все больше воды пассивно уходит в гиперосмотичный интерстиций и моча становится все более концентрированной.

Под влиянием вазопрессина реализуется еще один важный для концентрирования мочи механизм - пассивный выход мочевины из собирательных трубочек в окружающий интерстиций. Всасывание воды в верхних отделах собирательных трубочек ведет к нарастанию концентрации мочевины в моче, а в самых нижних их отделах, расположенных в глубине мозгового вещества, вазопрессин повыша­ет проницаемость для мочевины и она пассивно диффундирует в интерстиций, резко повышая его осмотическое давление. Таким образом, интерстиций мозгового вещества становится наиболее вы­соко осмотичным в области вершины почечных пирамид, где и происходит увеличение всасывания воды из просвета канальцев в интерстиций и концентрирование мочи.

Мочевина интерстициальной жидкости по концентрационному гра­диенту диффундирует в просвет тонкой восходящей части петли Генле и вновь поступает с током мочи в дистальные канальцы и собирательные трубочки. Так осуществляется кругооборот мочевины в канальцах, сохраняющих высокий уровень ее концентрации в мозговом веществе. Описанные процессы протекают в основном в юкстамедуллярных нефронах, имеющих наиболее длинные петли Генле, спускающиеся глубоко внутрь мозгового вещества почки.

В мозговом веществе почки имеется и другая - сосудистая про тивоточная система, образованная кровеносными капиллярами. По­скольку кровеносная сеть юкстамедуллярных нефронов образует длинные параллельные прямые нисходящие и восходящие капилляр­ные сосуды (рис. 12.1), спускающиеся вглубь мозгового вещества, двигающаяся по нисходящему прямому капиллярному сосуду кровь постепенно отдает воду в окружающее интерстициальное простран­ство в силу нарастающего осмотического давления в ткани и, напротив, обогащается натрием и мочевиной, сгущается и замедляет свое движение. В восходящем капиллярном сосуде по мере движе­ния крови в ткани с постепенно снижающимся осмотическим дав­лением происходят обратные процессы - натрий и мочевина по концентрационному градиенту диффундируют обратно в ткань, а вода всасывается в кровь. Таким образом, и эта противоточная система способствует поддержанию высокого осмотического давления в глу­боких слоях ткани мозгового вещества, обеспечивая удаление воды и удержание натрия и мочевины в интерстиций.

Деятельность описанных противоточных систем во многом зависит от скорости движения находящихся в них жидкостей (мочи или крови). Чем скорее будет двигаться моча по трубкам противоточной системы канальцев, тем меньшие количества натрия, мочевины и воды успеют реабсорбироваться в интерстиций и большие количе­ства менее концентрированной мочи будут выделяться почкой. Чем выше будет скорость кровотока по прямым капиллярным сосудам мозгового вещества почки, тем больше натрия и мочевины унесет кровь из почечного интерстиция, т.к. они не успеют диффундиро­вать из крови назад в ткань. Этот эффект называют «вымыванием» осмотически активных веществ из интерстиция, в результате его осмолярность падает, концентрирование мочи уменьшается и почкой выделяется больше мочи низкого удельного веса (разведение мочи). Чем медленнее происходит движение мочи или крови в мозговом веществе почек, тем больше осмотически активных веществ накап­ливается в интерстиции и выше способность почки концентрировать мочу.

Регуляция каналъцевой реабсорбции

text_fields

text_fields

arrow_upward

Регуляция каналъцевой реабсорбции осуществляется как нервным , так и, в большей мере, гуморальным путем.

Нервные влияния преимущественно реализуются симпатическими проводниками и медиаторами через бета- адренорецепторы мембран клеток проксимальных и дистальных канальцев. Симпатические эф­фекты проявляются в виде активации процессов реабсорбции глюкозы, натрия, воды и фосфатов и реализуются через систему вторичных посредников (аденилатциклаза - цАМФ). В регуляции процессов ме­таболизма почечной ткани существенную роль играют трофические влияния симпатической нервной системы. Нервная регуляция крово­обращения в мозговом веществе почки увеличивает или уменьшает эффективность сосудистой противоточной системы и концентрирова­ние мочи.

Сосудистые эффекты нервной регуляции могут опосредо­ваться через внутрипочечные системы гуморальных регуляторов - ренин- ангиотензинную, кининовую, простагландины и др. Основным фактором регуляции реабсорбции воды в дистальных отделах нефрона является гормон вазопрессин, называвшийся ранее антидиуретическим гормоном. Этот гормон образуется в супраоптическом и паравентрикулярных ядрах гипоталамуса и поступает в кровь из нейрогипофиза. Влияние вазопрессина на проницаемость эпителия канальцев обусловлено наличием рецепторов к гормону, относящихся к V-2 типу, на поверхности базолатеральной мембраны клеток эпи­телия. Образование гормон-рецепторного комплекса (глава 3), влечет за собой через посредство GS-белка и гуанилового нуклеотида акти­вацию аденилатциклазы и образование цАМФ у базолатеральной мем­браны (рис. 12.3).

Рис. 12.3. Механизм действия вазопрессина на проницаемость собирательных трубочек для воды.

Рис. 12.3. Механизм действия вазопрессина на проницаемость собирательных трубочек для воды.
Б-л мембрана - базолатеральная мембрана клеток,
А мембрана - апикальная мембрана,
ГН - гуанидиновый нуклеотид,АЦ - аденилатциклаза.

После этого цАМФ пересекает клетку эпителия и, достигнув апикальной мембраны, активирует цАМФ- зависимые протеинкиназы. Под влиянием этих ферментов происходит фосфорилирование мембранных белков, приводящее к повышению проницаемости для воды и увеличению поверхности мембраны. Перестройка ультра­структур клетки ведет к образованию специализированных вакуолей, переносящих большие потоки воды по осмотическому градиенту от апикальной к базолатеральной мембране, не позволяя самой клетке набухать. Такой транспорт воды через клетки эпителия реализуется вазопрессином в собирательных трубочках. Кроме того, в дистальных канальцах вазопрессин обусловливает активацию и выход из клеток гиалуронидаз, вызывающих расщепление гликозаминогликанов основ­ного межклеточного вещества и межклеточный пассивный транспорт воды по осмотическому градиенту.

Канальцевая реабсорбция воды

text_fields

text_fields

arrow_upward

Канальцевая реабсорбция воды регулируется и другими гормона­ми.

С учетом механизмов действия все гормоны, регулирующие реабсорбцию воды, можно представить в виде шести групп:

1) повышающие проницаемость мембран дистальных отделов нефрона для воды (вазопрессин, пролактин, хорионический гонадотропин);

2) меняющие чувствительность клеточных рецепторов к вазопрессину (паратирин, кальцитонин, кальцитриол, простагландины, альдостерон);

3) меняющие осмотический градиент интерстиция мозгового слоя почки и, соответственно, пассивный осмотический транспорт воды (паратирин, кальцитриол, тиреоидные гормоны, инсулин, вазопрессин);

4) меняющие активный транспорт натрия и хлорида, а за счет этого и пассивный транспорт воды (альдостерон, вазопрессин, атриопептид, прогестерон, глюкагон, кальцитонин, простагландины);

5) повышающие осмотическое давление канальцевой мочи за счет нереабсорбированных осмотически активных веществ, например глю­козы (контринсулярные гормоны);

6) меняющие кровоток по прямым сосудам мозгового.вещества и, тем самым, накопление или «вымывание» осмотически активных веществ из интерстиция (ангиотензин- II, кинины, простагландины, паратирин, вазопрессин, атриопептид).

Канальцевая реабсорбция электролитов

text_fields

text_fields

arrow_upward

Канальцевая реабсорбция электролитов, также как и воды, регу­лируется преимущественно гормональными, а не нервными влия­ниями.

Реабсорбция натрия в проксимальных канальцах активируется альдостероном и угнетается паратирином, в толстой части восходящего калена петли Генле реабсорбция натрия активируется вазопрессином, глюкагоном, кальцитонином, а угнетается простагландинами Е. В дистальном отделе канальцев основными регуляторами транспорта натрия являются альдостерон (активация), простагландины и атриопептид (угнетение).

Регуляция канальцевого транспорта кальция, фосфата и частично магния обеспечивается, в основном, кальций-регулирующими гормонами. Паратирин имеет в канальцевом аппа­рате почки несколько участков действия. В проксимальных каналь­цах (прямой отдел) всасывание кальция происходит параллельно с транспортом натрия и воды. Угнетение реабсорбции натрия в этом отделе под влиянием паратирина сопровождается параллельным сни­жением реабсорбции кальция. За пределами проксимального каналь­ца паратирин избирательно усиливает реабсорбцию кальция, особен­но в дистальном извитом канальце и корковой части собирательных трубочек. Реабсорбция кальция активируется также кальцитриолом, а подавляется кальцитонином. Всасывание фосфата в канальцах почки угнетается и паратирином (проксимальная реабсорбция), и кальци­тонином (дистальная реабсорбция), а усиливается кальцитриолом и соматотропином. Паратирин активирует реабсорбцию магния в кор­ковой части восходящего колена петли Генле и тормозит прокси­мальную реабсорбцию бикарбоната.



Загрузка...